Distribution of resistance genes among carbapenem-resistant Acinetobacter baumannii isolated from different clinical specimens

Main Article Content

Ghufran Rajab
Ahlam Kadhum https://orcid.org/0000-0002-3454-6058

Keywords

Acinetobacter baumannii, carbapenem resistance, carbapenemase, PCR

Abstract

Background: Carbapenems are the drugs of choice for serious hospital-acquired infections and for patients in intensive care unit affected by multidrug-resistant microorganisms, particularly Acinetobacter baumannii. Carbapenem-resistant Acinetobacter baumannii (CRAB) poses a significant threat to public health. Aim: The study aims to focus the distribution of carbapenemase-encoding genes belonging to classes A and B (blaGES, blaKPC, and blaNDM) among CRAB isolated from various clinical specimens. Methods: A total of 55 bacterial isolates were collected from different clinical specimens and underwent identification using Chrom agar and the Vitek 2 compact (ID) system. The checkerboard technique, modified Hodge test, and Vitek 2 compact (AST) system were employed to detect CRAB. PCR techniques were used to identify the presence of blaGES, blaKPC, and blaNDM. Results: Of the 55 isolates, 43 (78.1%) were identified as A. baumannii, with 39 (90.6%) of these being CRAB. All CRAB isolates could produce carbapenemase. The percentages of CRAB isolates possessing blaGES, blaKPC, and blaNDM were 28.2%, 15.4%, and 48.7%, respectively. In contrast, 25%a percentage of non-CRAB isolates possessing blaKPC and blaNDM   had 25% of each. Conclusion: A high prevalence of CRAB capable of producing carbapenemase and harboring blaGES, blaKPC, and blaNDM genes belonging to classes A and B was observed among various infections in Al Najaf hospitals.

Abstract 17 | Full text PDF Downloads 11

References

1. Roy S., Chowdhury G, Mukhopadhyay AK, Dutta S, Basu S. Convergence of biofilm formation and antibiotic resistance in Acinetobacter baumannii Infection. Front Med. 2022;9:793615. DOI: 10.3389/fmed.2022.793615
2. Nordmann P, Poirel LJCID. Epidemiology and diagnostics of carbapenem resistance in Gram-negative bacteria. Clin Infect Dis. 2019; 69(7):S521-S528. DOI: 10.1093/cid/ciz824
3. Ejaz H, Ahmad M, Younas S, Junaid K, Abosalif KOA, Abdalla AE. Molecular epidemiology of extensively-drug resistant Acinetobacter baumannii sequence type 2 co-harboring bla NDM and bla OXA from clinical origin. Infect Drug Resist. 2021;1931-39. DOI: 10.2147/IDR.S310478
4. Fournier PE, Richet H, Weinstein RAJC. The epidemiology and control of Acinetobacter baumannii in health care facilities. Clin Infect Dis 2006; 42(5):692-99. DOI: 10.1086/500202.
5. Ramirez MS, Bonomo RA, Tolmasky MEJB. Carbapenemases: Transforming Acinetobacter baumannii into a yet more dangerous menace.
Biomolecules. 2020; 10(5): 720. DOI: 10.3390/biom10050720
6. Harding CM, Hennon SW, Feldman MF. Uncovering the mechanisms of Acinetobacter baumannii virulence. 2018; 16(2):91-102. Nat Rev Microbiol.
DOI: 10.1038/nrmicro.2017.148.
7. Sheldon JR, Skaar EPJ. Acinetobacter baumannii can use multiple siderophores for iron acquisition, but only acinetobactin is required for virulence.
PLoS Pathog. 2020;16(10), e1008995. DOI: 10.1371/journal.ppat.1008995.
8. Abbott I, Gustavo MC, Saruar B, Anton YP. Carbapenem resistance in Acinetobacter baumannii: laboratory challenges, mechanistic insights, and therapeutic strategies. Expert Rev. Anti-Infect Ther. 2013; 11(4):395-409. DOI: 10.1586/eri.13.21.
9. Selvaraj A, Valliammai A, Sivasankar C, Suba M, Sakthivel G, Pandian SKJSR. Antibiofilm and antivirulence efficacy of myrtenol enhances the antibiotic susceptibility of Acinetobacter baumannii. Sci Rep. 2020; 10(1):21975. DOI: org/10.1038/s41598-020-79128-x
10. Yong D, Lee K, Yum JH, Shin HB, Rossolini GM, Chong YJ. (2002). Imipenem-EDTA disk method for differentiation of metallo-β-lactamase-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. Clin Microbiol. 2002; 40(10):3798-3801. DOI: 10.1128/JCM.40.10.3798-3801.2002.
11. Lee K, Chong Y, Shin H, Kim Y, Yong D, Yum JJCM. Modified Hodge and EDTA-disk synergy tests to screen metallo-β-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin Microbiol Infect. 2001; 7(2): 88-91. DOI: 10.1046/j.1469-0691.2001.00204.x
12. Ranjbar R, Afshar D. Evaluation of (GTG) 5-PCR for genotyping of Klebsiella pneumonia strains isolated from patients with urinary tract infections. Iranian Journal of Public Health. 2019;48(10).
13. Amudhan S, Sekar U, Arunagiri K, Sekar BJIJ. OXA beta-lactamase-mediated carbapenem resistance in Acinetobacter baumannii. Indian J Med Microbiol. 2011; 29(3):269-274. DOI: 10.4103/0255-0857.83911.
14. Moubareck C, Brémont S, Conroy MC, Courvalin P, Lambert TJA. GES-11, a novel integron-associated GES variant in Acinetobacter baumannii. Antimicrob Agents Chemotherapy. 2009; 53(8): 3579-3581. DOI: 10.1128/AAC.00072-09.
15. Soudeiha MA, Dahdouh EA, Azar E, Sarkis DK, Daoud ZJF. In vitro evaluation of the colistin-carbapenem combination in clinical isolates of A. baumannii using the checkerboard, Etest, and time-kill curve techniques. Front Cell Infect Microbiol. (2017);7:209.
DOI: 10.3389/fcimb.2017.00209.
16. Chuang YC, Sheng WH, Li SY et al. Influence of genospecies of Acinetobacter baumannii complex on clinical outcomes of patients with Acinetobacter bacteremia. Clin Infect Dis. 2011;52(3):352-360. DOI: 10.1093/cid/ciq154.
17. Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: Emergence of a successful pathogen. Clin Microbiol Rev. 2008;21:538-582.
DOI: 10.1128/CMR.00058-07.
18. Almasaudi SB. Acinetobacter spp. as nosocomial pathogens: epidemiology and resistance features. Saudi J Biol Sci. 2018;25:586-596. DOI: 10.1016/j.sjbs.2016.02.009

Similar Articles

You may also start an advanced similarity search for this article.